Distal renal tubular acidosis in mice lacking the AE1 (band3) Cl-/HCO3- exchanger (slc4a1).

نویسندگان

  • Paul A Stehberger
  • Boris E Shmukler
  • Alan K Stuart-Tilley
  • Luanne L Peters
  • Seth L Alper
  • Carsten A Wagner
چکیده

Mutations in the human gene that encodes the AE1 Cl(-)/HCO(3)(-) exchanger (SLC4A1) cause autosomal recessive and dominant forms of distal renal tubular acidosis (dRTA). A mouse model that lacks AE1/slc4a1 (slc4a1-/-) exhibited dRTA characterized by spontaneous hyperchloremic metabolic acidosis with low net acid excretion and, inappropriately, alkaline urine without bicarbonaturia. Basolateral Cl(-)/HCO(3)(-) exchange activity in acid-secretory intercalated cells of isolated superfused slc4a1-/- medullary collecting duct was reduced, but alternate bicarbonate transport pathways were upregulated. Homozygous mice had nephrocalcinosis associated with hypercalciuria, hyperphosphaturia, and hypocitraturia. A severe urinary concentration defect in slc4a1-/- mice was accompanied by dysregulated expression and localization of the aquaporin-2 water channel. Mice that were heterozygous for the AE1-deficient allele had no apparent defect. Thus, the slc4a1-/- mouse is the first genetic model of complete dRTA and demonstrates that the AE1/slc4a1 Cl(-)/HCO(3)(-) exchanger is required for maintenance of normal acid-base homeostasis by distal renal regeneration of bicarbonate in the mouse as well as in humans.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A single nucleotide polymorphism in kidney anion exchanger 1 gene is associated with incomplete type 1 renal tubular acidosis

Various conditions including distal renal tubular acidosis (dRTA) can induce stone formation in the kidney. dRTA is characterized by an impairment of urine acidification in the distal nephron. dRTA is caused by variations in genes functioning in intercalated cells including SLC4A1/AE1/Band3 transcribing two kinds of mRNAs encoding the Cl-/HCO3- exchanger in erythrocytes and that expressed in α-...

متن کامل

Familial distal renal tubular acidosis is associated with mutations in the red cell anion exchanger (Band 3, AE1) gene.

All affected patients in four families with autosomal dominant familial renal tubular acidosis (dRTA) were heterozygous for mutations in their red cell HCO3-/Cl- exchanger, band 3 (AE1, SLC4A1) genes, and these mutations were not found in any of the nine normal family members studied. The mutation Arg589--> His was present in two families, while Arg589--> Cys and Ser613--> Phe changes were foun...

متن کامل

Loss of kAE1 expression in collecting ducts of end-stage kidneys from a family with SLC4A1 G609R-associated distal renal tubular acidosis

Distal renal tubular acidosis caused by missense mutations in kidney isoform of anion exchanger 1 (kAE1/SLC4A1), the basolateral membrane Cl-/HCO3- exchanger of renal alpha-intercalated cells, has been extensively investigated in heterologous expression systems but rarely in human kidneys. The preferential apical localization of distal renal tubular acidosis (dRTA)-associated kAE1 mutants R901X...

متن کامل

Cation transport activity of anion exchanger 1 mutations found in inherited distal renal tubular acidosis.

Anion exchanger 1 (AE1) is encoded by SLC4A1 and mediates electroneutral anion exchange across cell membranes. It is the most abundant protein in the red cell membrane, but it is also found in the basolateral membrane of renal alpha-intercalated cells, where it is required for normal urinary acidification. Recently, four point mutations in red cell AE1 have been described that convert the anion...

متن کامل

Mouse Ae1 E699Q mediates SO42-i/anion-o exchange with [SO42-]i-dependent reversal of wild-type pHo sensitivity.

The SLC4A1/AE1 gene encodes the electroneutral Cl(-)/HCO(3)(-) exchanger of erythrocytes and renal type A intercalated cells. AE1 mutations cause familial spherocytic and stomatocytic anemias, ovalocytosis, and distal renal tubular acidosis. The mutant mouse Ae1 polypeptide E699Q expressed in Xenopus oocytes cannot mediate Cl(-)/HCO(3)(-) exchange or (36)Cl(-) efflux but exhibits enhanced dual ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of the American Society of Nephrology : JASN

دوره 18 5  شماره 

صفحات  -

تاریخ انتشار 2007